p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊3Q16, C24.122D4, C4.42+ 1+4, C2.D8⋊5C22, C8.18D4⋊3C2, C22⋊Q16⋊4C2, (C2×Q16)⋊2C22, C4⋊C4.128C23, (C2×C8).151C23, (C2×C4).387C24, Q8⋊C4⋊2C22, (C22×C4).485D4, C23.401(C2×D4), C22.17(C2×Q16), C2.14(C22×Q16), C23.48D4⋊5C2, (C2×Q8).127C23, C2.68(C23⋊3D4), C22⋊C8.176C22, (C23×C4).567C22, (C22×C8).149C22, C22.647(C22×D4), C22⋊Q8.185C22, C2.49(D8⋊C22), (C22×C4).1065C23, (C22×Q8).313C22, (C2×C4).527(C2×D4), (C2×C22⋊C8).32C2, (C2×C22⋊Q8).58C2, (C2×C4⋊C4).637C22, SmallGroup(128,1921)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊3Q16
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=d4, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 404 in 208 conjugacy classes, 94 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C22⋊C8, Q8⋊C4, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C2×Q16, C23×C4, C22×Q8, C2×C22⋊C8, C22⋊Q16, C8.18D4, C23.48D4, C2×C22⋊Q8, C23⋊3Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C24, C2×Q16, C22×D4, 2+ 1+4, C23⋊3D4, C22×Q16, D8⋊C22, C23⋊3Q16
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 29)(26 30)(27 31)(28 32)
(2 31)(4 25)(6 27)(8 29)(10 24)(12 18)(14 20)(16 22)
(1 30)(2 31)(3 32)(4 25)(5 26)(6 27)(7 28)(8 29)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 5 13)(2 16 6 12)(3 15 7 11)(4 14 8 10)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (2,31)(4,25)(6,27)(8,29)(10,24)(12,18)(14,20)(16,22), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,5,13)(2,16,6,12)(3,15,7,11)(4,14,8,10)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (2,31)(4,25)(6,27)(8,29)(10,24)(12,18)(14,20)(16,22), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,5,13)(2,16,6,12)(3,15,7,11)(4,14,8,10)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,29),(26,30),(27,31),(28,32)], [(2,31),(4,25),(6,27),(8,29),(10,24),(12,18),(14,20),(16,22)], [(1,30),(2,31),(3,32),(4,25),(5,26),(6,27),(7,28),(8,29),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,5,13),(2,16,6,12),(3,15,7,11),(4,14,8,10),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | Q16 | 2+ 1+4 | D8⋊C22 |
kernel | C23⋊3Q16 | C2×C22⋊C8 | C22⋊Q16 | C8.18D4 | C23.48D4 | C2×C22⋊Q8 | C22×C4 | C24 | C23 | C4 | C2 |
# reps | 1 | 1 | 4 | 4 | 4 | 2 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C23⋊3Q16 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,16,1,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,16,0,0,0,0,0,15,1,0,0],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1] >;
C23⋊3Q16 in GAP, Magma, Sage, TeX
C_2^3\rtimes_3Q_{16}
% in TeX
G:=Group("C2^3:3Q16");
// GroupNames label
G:=SmallGroup(128,1921);
// by ID
G=gap.SmallGroup(128,1921);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,219,352,675,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=d^4,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations